Total found: 21 records |
Brown J. J., Jandová A., Jeffs C.T., Higgie M.,
Nováková E., Lewis O., Hrček J. (2023) Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines. Applied and Environmental Microbiology
89: e00099-23.
DOI: 10.1128/aem.00099-23
|
Mahmood S.,
Nováková E.,
Martinů J., Sychra O.,
Hypša V. (2023) Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts Microbiome
11: 22.
DOI: 10.1186/s40168-023-01462-9
|
Říhová J., Gupta S., Darby C.D.,
Nováková E.,
Hypša V. (2023) Arsenophonus symbiosis with louse flies: multiple origins, coevolutionary dynamics, and metabolic significance mSystems
8: e00706-23.
DOI: 10.1128/msystems.00706-23
|
Tarabai H., Floriano A.M., Zima J., Filová N., Brown J. J., Roachell W., Smith R.J., Beatty N.L., Vogel K.J.,
Nováková E. (2023) Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment. Microbiology Spectrum
11: article number: e01681-23.
DOI: 10.1128/spectrum.01681-23
|
Kahoun D., Fojtíková P., Vácha F., Čížková M., Vodička R.,
Nováková E.,
Hypša V. (2022) Development and validation of an LC-MS/MS method for determination of B vitamins and some its derivatives in whole blood Plos One
17: e0271444.
DOI: 10.1371/journal.pone.0271444
|
Říhová J., Bell K.C.,
Nováková E.,
Hypša V. (2022) Lightella neohaematopini: A new lineage of highly reduced endosymbionts coevolving with chipmunk lice of the genus Neohaematopinus Frontiers in Microbiology
13: 900312.
DOI: 10.3389/fmicb.2022.900312
|
Říhová J., Batani G., Rodríguez-Ruano S.M.,
Martinů J., Vácha F.,
Nováková E.,
Hypša V. (2021) A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Molecular Ecology
30: 2178-2196.
DOI: 10.1111/mec.15866
|
Brown J. J., Rodríguez-Ruano S.M., Poosakkannu A., Batani G., Schmidt J.O., Roachell W., Zima J., Hypša V.,
Nováková E. (2020) Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). Microbiome
8: 146.
DOI: 10.1186/s40168-020-00921-x
|
Rodríguez-Ruano S.M., Juhanakova E., Vávra J.,
Nováková E. (2020) Methodological Insight Into Mosquito Microbiome Studies. Frontiers in Cellular and Infection Microbiology
10: 86.
DOI: 10.3389/fcimb.2020.00086
|
Song S.J., Sanders N., Baldassarre D.T., Chaves J.A., Johnson N.S., Piaggio A.J., Stuckey M.J.,
Nováková E., Metcalf J.L., Chomel B.B., Aguilar-Setién A., Knight R., McKenzie V.J. (2019) Is there convergence of gut microbes in blood-feeding vertebrates? Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
374: 1777.
DOI: 10.1098/rstb.2018.0249
|
Păstrav I.R., Ionică A., Peştean C.,
Nováková E.,
Modrý D., Mihalca A. (2018) Peripheral venous vs. capillary microfilariaemia in a dog co-infected with Dirofilaria repens and D. immitis: A comparative approach using triatomine bugs for blood collection. Veterinary Parasitology
257: 54–57.
DOI: 10.1016/j.vetpar.2018.05.017
|
Rodríguez-Ruano S.M., Škochová V.,
Rego R. O. M., Schmidt J.O., Roachell W.,
Hypša V.,
Nováková E. (2018) Microbiomes of North American Triatominae: The Grounds for Chagas Disease Epidemiology Frontiers in Microbiology
9: 1167.
DOI: 10.3389/fmicb.2018.01167
|
Nováková E., Woodhams D.C., Rodríguez-Ruano S.M., Brucker R.M., Leff J.W., Maharaj A., Amir A., Knight R., Scott J. (2017) Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus Frontiers in Microbiology
8: 526.
DOI: 10.3389/fmicb.2017.00526
|
Říhová J.,
Nováková E.,
Husník F.,
Hypša V. (2017) Legionella becoming a mutualist: adaptive processes shaping the genome of symbiont in the louse Polyplax serrata Genome Biology and Evolution
9: 2946-2957.
DOI: 10.1093/gbe/evx217
|
Thairu M.W., Skidmore I.H., Bansal R.,
Nováková E., Hansen T.E., Li-Byarlay H., Wickline S.A., Hansen A.K. (2017) Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species Insect Molecular Biology
26: 356-368.
DOI: 10.1111/imb.12301
|
Nováková E.,
Hypša V., Nguyen P.,
Husník F., Darby A. (2016) Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Standards in Genomic Sciences
11: article number 72.
DOI: 10.1186/s40793-016-0195-1
|
Nováková E.,
Husník F., Šochová E.,
Hypša V. (2015) Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies Applied and environmental microbiology
81: 6189-6199.
DOI: 10.1128/AEM.01487-15
|
Nováková E.,
Hypša V., Klein J., Foottit R., Von Dohlen C., Moran N. (2013) Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola Molecular Phylogenetics and Evolution
68: 42-54.
DOI: 10.1016/j.ympev.2013.03.016
|
Chrudimský T.,
Husník F.,
Nováková E.,
Hypša V. (2012) Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLoS One
7: e40354.
DOI: 10.1371/journal.pone.0040354
|
Nováková E.,
Hypša V., Moran N. (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiology
9: 1-14.
DOI: 10.1186/1471-2180-9-143
|